On local regularity estimates for fractional powers of parabolic operators with time-dependent measurable coefficients

نویسندگان

چکیده

Abstract We consider fractional operators of the form $$\begin{aligned} {\mathcal {H}}^s=(\partial _t -\text {div}_{x} ( A(x,t)\nabla _{x}))^s,\ (x,t)\in {\mathbb {R}}^n\times {R}}, \end{aligned}$$ H s = ( ? t - div x A , ) ? ? R n × where $$s\in (0,1)$$ 0 1 and $$A=A(x,t)=\{A_{i,j}(x,t)\}_{i,j=1}^{n}$$ { i j } is an accretive, bounded, complex, measurable, $$n\times n$$ -dimensional matrix valued function. study $${{\mathcal {H}}}^s$$ their relation to initial value problem \begin{aligned} (\lambda ^{1-2s}\textrm{u}')'(\lambda )&=\lambda ^{1-2s}{\mathcal {H}}\textrm{u}(\lambda ), \quad \lambda \in (0, \infty \\ \textrm{u}(0)&= u, \end{aligned} ? 2 u ? ? u in $${\mathbb {R}}_+\times {R}}$$ + . Exploring relation, making additional assumption that real, we derive some local properties solutions non-local Dirichlet {H}}^su=(\partial _{x}))^su&=0\hbox { for}\ \Omega \times J,\nonumber u&=f \text{ for } {R}}^{n+1}\setminus (\Omega J). for ? J f \ . Our contribution allow non-symmetric time-dependent coefficients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L–regularity for Parabolic Operators with Unbounded Time–dependent Coefficients

We establish the maximal regularity for nonautonomous OrnsteinUhlenbeck operators in L-spaces with respect to a family of invariant measures, where p ∈ (1,+∞). This result follows from the maximal L-regularity for a class of elliptic operators with unbounded, time-dependent drift coefficients and potentials acting on L(R ) with Lebesgue measure.

متن کامل

Parabolic Equations with Measurable Coefficients

We investigate the unique solvability of second order parabolic equations in non-divergence form in W 1,2 p ((0, T ) × R), p ≥ 2. The leading coefficients are only measurable in either one spatial variable or time and one spatial variable. In addition, they are VMO (vanishing mean oscillation) with respect to the remaining variables.

متن کامل

Real Analytic Solutions of Parabolic Equations with Time-measurable Coefficients

We use Bernstein’s technique to show that for any fixed t, strong solutions u(t, x) of the uniformly parabolic equation Lu := aij (t)uxixj−ut = 0 in Q are real analytic in Q(t) = {x : (t, x) ∈ Q}. Here, Q ⊂ Rd+1 is a bounded domain and the coefficients aij(t) are measurable. We also use Bernstein’s technique to obtain interior estimates for pure second derivatives of solutions of the fully nonl...

متن کامل

The Regularity Problem for Second Order Elliptic Operators with Complex-valued Bounded Measurable Coefficients

The present paper establishes a certain duality between the Dirichlet and Regularity problems for elliptic operators with t-independent complex bounded measurable coefficients (t being the transversal direction to the boundary). To be precise, we show that the Dirichlet boundary value problem is solvable in Lp ′ , subject to the square function and non-tangential maximal function estimates, if ...

متن کامل

On maximal parabolic regularity for non-autonomous parabolic operators

We consider linear inhomogeneous non-autonomous parabolic problems associated to sesquilinear forms, with discontinuous dependence of time. We show that for these problems, the property of maximal parabolic regularity can be extrapolated to time integrability exponents r 6= 2. This allows us to prove maximal parabolic L r-regularity for discontinuous non-autonomous second-order divergence form ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Evolution Equations

سال: 2022

ISSN: ['1424-3199', '1424-3202']

DOI: https://doi.org/10.1007/s00028-022-00844-0